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Abstract

In the simulation of laser-driven implosion of a fuel capsule in inertial confinement fusion experiments, a system of two-
dimensional diffusion equations coupled with electron, iron and photon temperature are widely used to approximately
describe the process of energy across multiple materials and the exchange of energy among electrons, irons and photons.
The numerical solution of such equations is always challenging because of its strong nonlinear phenomena and strong dis-
continuous interfaces. In this article, we design a symmetric finite volume method, develop the corresponding precondi-
tioning technique, and propose a mesh adaptation algorithm based on Hessian matrix and a two-grid method. Using
these new methods, we demonstrate that the energy conservation error and computation efficiency of the integrated algo-
rithm are much better than classical method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Unsteady radiation fluid dynamics equations derived from the conservational of mass, momentum and
energy are the basic control partial differential equations for laser-driven implosion of a fuel capsule with
the goal of igniting a self-sustained reaction in inertial confinement experiments [1–4]. In the course of solving
these equations, we found that the energy equation is the most time consuming, yet in the computation of the
whole system, solving the energy equation is an very important one. Because of the strong nonlinearity and
strong discontinuous interfaces, it is critical to design efficient numerical algorithms for the energy equations.
Fortunately, in most cases we can simplify the radiation fluid dynamics equations into 3-T diffusion equations
without losing essential properties , which describe the radiation evolution of energy across multiple materials
and perceive the exchange of energy among electrons, ions and photons [5].
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In this paper, we design a symmetric finite volume element method (SFVEM) and develop the correspond-
ing preconditioning technique, and then propose a mesh adaptation algorithm based on Hessian matrix and a
two-grid method. Using the new methods, we design an integrated algorithm to solve the 2-D 3-T diffusion
equations, and demonstrated by numerical examples that the integrated algorithm is efficient.

The rest of the paper proceeds as follows. We present 2-D 3-T diffusion equations in Section 2. We propose
some new numerical methods and improved processes for solving the model equations in Section 3. We report
some numerical examples for the new approach in Section 4 and we finish the paper by a short discussion in
Section 5.

2. 2-D 3-T diffusion equations

Two-dimensional diffusion equations coupled with electron, iron and photon are defined by
ce

oT e

ot
� 1

q
rðKerT eÞ ¼ xeiðT i � T eÞ þ xerðT r � T eÞ; ð1Þ

ci

oT i

ot
� 1

q
rðK irT iÞ ¼ xeiðT e � T iÞ; ð2Þ

4

q
crT 3

r

oT r

ot
� 1

q
rðKrrT rÞ ¼ xerðT e � T rÞ: ð3Þ
In the above equations, T e; T i; T r are the temperature functions of electron, iron and photon, respectively. q
denotes the density of the medium, which is a constant within each subdomain and discontinuous across inter-
faces of subdomains. Ke; K i; Kr are conductive coefficients of electron, iron, photon, where
Ka ¼ AaT 5=2
a ; a ¼ e; i;

Kr ¼ ArT 3þb
r :
xei is the energy exchange coefficient between electron and iron, xer is the energy exchange coefficients between
electron and photon, where
xei ¼ qAeiT�2=3
e ;

xer ¼ qAerT�1=2
e :
Parameter ca; Aa ða ¼ e; i; rÞ; b; Aei; Aer are constant within each subdomain, but they are discontinuous
across interfaces of subdomains. The system energy of unit mass is defined by
E ¼ Ee þ Ei þ Er; Ee ¼ ceT e; Ei ¼ ciT i; Er ¼
1

q
crT 4

r : ð4Þ
According to physical experiments, we define the computation domain, boundary conditions and initial con-
ditions as follows.

Computation domain:
fðx; y; tÞ j ðx; yÞ 2 Xxy ; 0 6 t 6 T g, where Xxyð¼

S3
i¼1XiÞ is a half upper circle with radius R under two-

dimensional Cartesian coordinate system, and the circle center is overlapped with the coordinate origin, diam-
eter is aligned with the X coordinate axis. Especially, three types of materials are included such that the
innermost subdomain (X1) is filled with deuterium gas (DT) and covers the area with 0 6 r < R1, the middle
subdomain (X2) is filled with glass (SiO2) and covers the area with R1 6 r < R2 and the outside subdomain
(X3) is filled with plastic foam (CH). C1 denotes the free boundary and C2 denotes the wall boundary. (see
Fig. 1).

Boundary conditions:

1. Wall: Ka
oT a
on jC2

¼ 0; a ¼ e; i; r, where oT a
on is the outer normal vector along boundary,

2. Free: Ka
oT a
on jC1

¼ 0; a ¼ e; i,
T r ¼ T rðx; y; tÞjC1
¼ g1ðx; yÞ:



Fig. 1. Computation domain Xxy.
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Initial condition:
T aðx; y; 0Þ ¼ T 0
aðx; yÞ ¼ g2ðx; yÞ; a ¼ e; i; r:
2-D 3-T diffusion equations (1)–(3) approximately describe the process of radiant energy broadcasting in
the quiescent medium and energy exchange of electrons with photons and irons.

3. Solution methodology

To solve the 2-D 3-T diffusion system (1)–(3), we will develop an integrated numerical process including
discretization, linearization, and precondition for solving the linearized system.

3.1. Common numerical methods

For the property of absolute numerical stability, we use backward Euler stencil to discretize the temporal
derivative. Then, we get the nonlinear partial differential equations as follows:
ceT e �
Dt
q
r � ðKerT eÞ � DtweiðT i � T eÞ � DtwerðT r � T eÞ ¼ ceT ðn�1Þ

e ; ð5Þ

ciT i �
Dt
q
r � ðK irT iÞ � DtweiðT e � T iÞ ¼ ciT

ðn�1Þ
i ; ð6Þ

4

q
crT 4

r �
Dt
q
r � ðKrrT rÞ � DtwerðT e � T rÞ ¼

4

q
crT 3

r T ðn�1Þ
r ; ð7Þ
where T a; T ðn�1Þ
a ; a ¼ e; i; r are the temperature functions at time tn and tn�1, Dt ¼ tn � tn�1.

We can use the Newton method or Freezing coefficient method (FCM) to linearize the nonlinear equations
(5)–(7). In general, the Newton method seems more desirable than FCM, but Newton method requires one order
derivative, it will break the conservation of equations and make the discretization more complicated. Solving
2-D 3-T diffusion equations, sometimes FCM works better than the Newton method.

Linearizing the nonlinear equations (5)–(7) with FCM, we obtain a linear partial differential equations as
follows:
�rðderT eÞ þ ðdei þ der þ ceÞT e � deiT i � derT r ¼ fe; ð8Þ
� rðd irT iÞ þ ðdei þ ciÞT i � deiT e ¼ fi; ð9Þ
� rðdrrT rÞ þ ðder þ c0rÞT r � derT e ¼ fr; ð10Þ
where
de ¼ Dt
q

~Ke;

d i ¼ Dt
q

~K i;

Dt

8>><>>:
dei ¼ �Dt~wei;

der ¼ �Dt~wer;

c0 ¼ 4 c ~T 3;

8><>:
fe ¼ ceT ðn�1Þ

e ;

fi ¼ ciT
ðn�1Þ
i ;

0 ðn�1Þ

8><>:

dr ¼ q

~Kr; r q r r fr ¼ crT r ;
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~T a; a ¼ e; i; r are the latest solution functions of linear PDEs in the nonlinear iteration. ~Ka; ~wei; ~wer are the
conductive coefficients and energy exchange coefficients calculated by ~T a.

In the recent literature, finite difference and finite volume element method (FVEM) are used to discrete the
linear PDEs (8)–(10). The matrix of the discrete system by finite difference or finite volume method is not sym-
metric although the original PDE system (8)–(10) is symmetric. As a result, many efficient methods for solving
large algebraic equations, e.g., the conjugate gradient method (CG), cannot be used here.

For lacking of precondition theory of finite difference and finite volume method, we use the ILU as a pre-
conditioner. The common process of solving 2-D 3T diffusion equations (1)–(3) defined as follows.

Algorithm 3.1.

1: Initial temporal variable Dt, t ¼ 0; tend ¼ T and mesh Th;
2: Solve the nonlinear PDEs (5)–(7) at time (t + Dt) with FC-FVEM-GMRES(ILU) method base on mesh

Th;
3: Adapt the time step size Dt based on mesh Th and numerical solution;
4: t ¼ t þ Dt, if ðt < tendÞ goto 2:
5: End.

Here, the adaptive rules for time step size are similar as [5].
3.2. Symmetric finite volume element method (SFVEM)

To overcome the disadvantage of FVEM , we propose a new symmetric finite volume element method
(SFVEM), which can preserve the symmetrical discrete system of linear PDEs (8)–(10). [6,7] have developed
the similar work on parabolic equation and quadrilateral grids.

Let T h ¼ fsg denote a regular and quasi-uniform triangulation of X, o2T h ¼ fP i; i ¼ 1; . . . ;Ng be the set of
vertices of the triangulation Th and N be the number of vertices. We can construct a dual mesh Bh based upon
Th, called the box mesh, as follows: for each s 2 T h, select the barycenter point O, then connect O by straight-
line segments to the edge midpoints of s. These segments decompose each s into three subregions (see
Fig. 2(a)). With each P i 2 o2T h, we associate the box bi 2 Bh (see Fig. 2(b)), which consists of the union of
the subregions which have a Pi as a corner and make up the dual mesh. The elements in the dual mesh are
call boxes or control volumes and the dual mesh Bh is the so-called barycenter dual mesh.

According to the discretization procedure of FVEM, we firstly take the integral of linear PDEs (8)–(10)
over a box bi, and get the balance equations at vertex Pi as follows.
�
Z

obi

de

oT e

on
dsþ

Z
bi

ðdei þ der þ ceÞT e �
Z

bi

deiT i �
Z

bi

derT r ¼
Z

bi

fe; ð11Þ

�
Z

obi

d i

oT i

on
dsþ

Z
bi

ðdei þ ciÞT i �
Z

bi

deiT e ¼
Z

bi

fi; ð12Þ

�
Z

obi

dr

oT r

on
dsþ

Z
bi

ðder þ c0rÞT r �
Z

bi

derT e ¼
Z

bi

fr; ð13Þ
where obi denotes the boundary of bi.
Fig. 2. Barycenter dual mesh: (a) s and three subcontrol volumes, (b) box bi and vertex Pi.
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For approximating equations (11)–(13), we define three linear finite element spaces and two constant finite
element spaces associated with Th and Bh, respectively, by
V 0 ¼ fv 2 L2 : vjs 2 P 0 8s 2 T hg;
V B ¼ fv 2 L2 : vjbi

2 P 0 8bi 2 Bhg;
V h ¼ fv 2 CðXÞ : vjs 2 P 1 8s 2 T hg;
V r

h ¼ fv 2 CðXÞ : vjs 2 P 1 8s 2 T h; vjC1
¼ gg;
where Pk denotes the set of polynomial functions that the order is no more than k, g is a known function.
Then, we introduce Ih : CðXÞ ! V B; I�h : CðXÞ ! V 0, respectively, by
IhvðxÞ ¼ vðP iÞ 8x 2 bi; bi 2 Bh; I�hvðxÞ ¼ vðOÞ 8x 2 s; s 2 T h;
where O is the barycenter of s.
Let T e � T h

e 2 V h; T i � T h
i 2 V h; T r � T h

r 2 V r
h, we can get the approximation balance equations as

follows.
�
Z

obi

I�h de
oT h

e

on

� �
dsþ

Z
bi

Ihðdei þ der þ ceÞIhT h
e �

Z
bi

IhdeiIhT h
i �

Z
bi

IhderIhT h
r ¼

Z
bi

Ihfe; ð14Þ

�
Z

obi

I�h d i

oT h
i

on

� �
dsþ

Z
bi

Ihðdei þ ciÞIhT h
i �

Z
bi

IhdeiIhT h
e ¼

Z
bi

Ihfi; ð15Þ

�
Z

obi

I�h dr

oT h
r

on

� �
dsþ

Z
bi

Ihðder þ c0rÞIhT h
r �

Z
bi

IhderIhT h
e ¼

Z
bi

Ihfr: ð16Þ
Next, we will transform the integration over the boundary in Eq. (14) into the integration over the element.
Let sij denote the jth neighboring triangle element of vertex Pi, here j ¼ 1ð1Þni and ni is the total number of

the neighbor element of Pi. In element sij , P i; P 1
j ; P 2

j are the three corners, M1
j ; M2

j ; M3
j denote the three edge

midpoints and Oij is the barycenter (see Fig. 3).
As I�hdeðxÞ ¼ deðOijÞ is a constant when x 2 sij , we have
�
Z

obi

I�h de

oT h
e

on

� �
ds ¼ �

Xni

j¼1

I�hde

Z
dM1
j Oij M2

j

oT h
e

on
ds: ð17Þ
Since T h
e 2 V h is a linear function, DT h

e jsij
¼ 0, we find that
0 ¼
Z

bij

DT h
e dx ¼

Z
obij

oT h
e

on
ds ¼

Z
dM1
j Oij M2

j

oT h
e

on
dsþ

Z
M2

j P i

oT h
e

on
dsþ

Z
P iM1

j

oT h
e

on
ds: ð18Þ
Let /i be the base function of Vh at Pi. Consider
/ijP 1
j P 2

j
¼ 0;

oT h
e

on
j
P l

jP i
2 P 0;

Z
P l

jP i

/i ds ¼ 1

2
jP l

jP ij; l ¼ 1; 2:
Fig. 3. Triangle element sij .
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From (18), we have
Z
dM1
j Oij M2

j

oT h
e

on
ds ¼ �

Z
M2

j P i

oT h
e

on
ds�

Z
P iM1

j

oT h
e

on
ds ¼ � 1

2

Z
P 2

j P i

oT h
e

on
dsþ

Z
P iP 1

j

oT h
e

on
ds

 !

¼ �
Z

P 1
j P i

oT h
e

on
/i dsþ

Z
P 2

j P i

oT h
e

on
/i dsþ

Z
P 1

j P 2
i

oT h
e

on
/i ds

 !
¼ �

Z
osij

oT h
e

on
/i ds

¼ �
Z

sij

rT h
er/i dx:
Using this fact in Eq. (17), It follows that
�
Z

obi

I�h de
oT h

e

on

� �
ds ¼

Xni

j¼1

Z
sij

I�hderT h
er/i ds: ð19Þ
By (14) and (19), we obtain
Z
Xi

I�hderT h
er/i þ

Z
bi

Ihðdei þ der þ ceÞIhT h
e �

Z
bi

IhdeiIhT h
i �

Z
bi

IhderIhT h
r ¼

Z
bi

Ihfe; ð20Þ
where Xi ¼
Sni

j¼1sij .
Since /iðP jÞ ¼ dij and /i has a local support , we have
Z

X
I�hderT h

er/i þ
Z

X
Ihðdei þ der þ ceÞIhT h

eIh/i �
Z

X
IhdeiIhT h

i Ih/i �
Z

X
IhderIhT h

r Ih/i ¼
Z

X
IhfeIh/i: ð21Þ
Similarly, Eqs. (15) and (16) have the following equivalent equations:
Z
X

I�hd irT h
ir/i dxþ

Z
X

Ihðdei þ ciÞIhT h
i Ih/idx�

Z
X

IhdeiIhT h
eIh/i dx ¼

Z
X

IhfiIh/i dx; ð22ÞZ
X

I�hdrrT h
rr/i dxþ

Z
X

Ihðder þ c0rÞIhT h
r Ih/idx�

Z
X

IhderIhT h
eIh/i dx ¼

Z
X

IhfrIh/i dx: ð23Þ
Let �T ¼ ðT h
e ; T

h
i ; T

h
r Þ

t 2 V h � V h � V r
h;

�f ¼ ðf h
e ; f

h
i ; f

h
r Þ

t. Using (21)–(23), we obtain the variational formulation
of SFVEM.
~að�T ; vÞ ¼ ð�f ; vÞ 8v ¼ ðvh
e ; v

h
i ; v

h
r Þ

t 2 V h � V h � V r;0
h ; ð24Þ
where
ð�f ; vÞ ¼ ðIhfe; Ihvh
eÞ þ ðIhfi; Ihvh

i Þ þ ðIhfr; Ihvr
rÞ;

~að�T ; vÞ ¼ ~aeðT h
e ; v

h
eÞ þ ~aiðT h

i ; v
h
i Þ þ ~arðT h

r ; v
h
r Þ þ ðIhdeiIhT h

e ; Ihvh
eÞ þ ðIhderIhT h

e ; Ihvh
eÞ þ ðIhdeiIhT h

i ; Ihvh
i Þ

þ ðIhderIhT h
r ; Ihvh

r Þ � ðIhdeiIhT h
i ; Ihvh

eÞ � ðIhderIhT h
r ; Ihvh

eÞ � ðIhdeiIhT h
e ; Ihvh

i Þ � ðIhderIhT h
e ; Ihvh

r Þ;
and
~aeðu;wÞ ¼
Z

X
ðI�hderurwþ IhceIhuIhwÞ dx;

~aiðu;wÞ ¼
Z

X
ðI�hd irurwþ IhciIhuIhwÞ dx;

~arðu;wÞ ¼
Z

X
ðI�hdrrurwþ Ihc0rIhuIhwÞ dx:
Here, V r;0
h denotes the space V r

h with g = 0.
According to the variational equation (24), we get the linear algebraic system of Eqs. (5)–(7) with SFVEM.
AhU h ¼ F h; ð25Þ

where U h; F h 2 R3N ; Ah 2 R3N�3N .
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In the process of approximating balance equations, we defined a special operator I�h which is different from
FVEM. Then, we get the Petrov–Galerkin variational formulation of SFVEM. As the bilinear function ~að�T ; vÞ
is symmetric, it follows that matrix Ah is symmetric too. Because we only need to calculate the value of
da; a ¼ e; i; r at the triangle barycenter to produce the stiff matrix of the element in SFVEM , it is obvious
that the discretization of SFVEM is cheaper than FVEM.

3.3. Precondition

Similar to the finite element method and the traditional finite volume element method, FVEM suffers from
the ill-condition of its coefficient matrix. In the last decade, some efficient preconditioning techniques have been
developed for the FEM [8–10]. Since the test space is different from the trial space in FVEM, it’s very difficult to
develop the preconditioning of FVEM with the same technique of FEM. Generally, we often use ILU decom-
position method to precondition the FVEM, which usually cause trouble when the system become bigger.

In [11], an auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite
elements. In this subsection, we develop an algebraic multigrid(AMG) preconditioning for the SFVEM coef-
ficient matrix of 2-D 3-T diffusion equations with the ideal of using linear finite element system to precondition
finite volume element system.

For the purpose of this section, we firstly present the FEM variational equations of linear PDEs (8)–(10).
að�T ; vÞ ¼ ð�f ; vÞ; 8v ¼ ðvh
e ; v

h
i ; v

h
r Þ

t 2 V h � V h � V r;0
h ; ð26Þ
where
ð�f ; vÞ ¼ ðfe; vh
eÞ þ ðfi; vh

i Þ þ ðfr; vr
rÞ;

að�T ; vÞ ¼ aeðT h
e ; v

h
eÞ þ aiðT h

i ; v
h
i Þ þ arðT h

r ; v
h
r Þ þ ðdeiT h

e ; v
h
eÞ þ ðderT h

e ; v
h
eÞ þ ðdeiT h

i ; v
h
i Þ þ ðderT h

r ; v
h
r Þ

� ðdeiT h
i ; v

h
eÞ � ðderT h

r ; v
h
eÞ � ðdeiT h

e ; v
h
i Þ � ðderT h

e ; v
h
r Þ:
According to the properties of coefficient functions and elliptic equation, we have
að�T ; �T ÞJ kT ek2
1 þ kT ik2

1 þ kT rk2
1 þ ðdeiT e; T eÞ þ ðderT e; T eÞ þ ðdeiT i; T iÞ þ ðderT r; T rÞ

� 2ðdeiT i; T eÞ � 2ðderT r; T eÞ
J kT ek2

1 þ kT ik2
1 þ kT rk2

1 þ ðdeiðT e � T iÞ; ðT e � T iÞÞ þ ðderðT e � T rÞ; ðT e � T rÞÞ
J kT ek2

1 þ kT ik2
1 þ kT rk2

1 J kTk2
1;
and
að�T ; �T ÞK kT ek2
1 þ kT ik2

1 þ kT rk2
1 þ kT e � T ik2

0 þ kT e � T rk2
0

K kT ek2
1 þ kT ik2

1 þ kT rk2
1 þ ðkT ek0 þ kT ik0Þ

2 þ ðkT ek0 þ kT rk0Þ
2

K kT ek2
1 þ kT ik2

1 þ kT rk2
1 þ ðkT ek2

0 þ kT ik2
0Þ þ ðkT ek2

0 þ kT rk2
0Þ

K kT ek2
1 þ kT ik2

1 þ kT rk2
1 þ ðkT ek2

1 þ kT ik2
1Þ þ ðkT ek2

1 þ kT rk2
1Þ

K kT ek2
1 þ kT ik2

1 þ kT rk2
1 K kTk2

1;
which demonstrate that
að�T ; �T Þuk�Tk2
1; ð27Þ
and the function að�T ; vÞ is positive definite. In the same way, we can prove
~að�T ; �T Þuk�Tk2
1: ð28Þ
The corresponding discretezation linear algebraic system of (26) is
AhU h ¼ F h; ð29Þ

where F h 2 R3N and Ah 2 R3N�3N . Ah is a SPD matrix obviously.
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From (27) and (28), It is easy to prove that the coefficient matrix Ah and Ah satisfy
ðAhU ;UÞK ðAhU ;UÞK ðAhU ;UÞ 8U 2 R3N : ð30Þ
It shows that Ah is a SPD matrix, CG method is available for solving the linear system (25). It also dem-
onstrates the spectral equivalence of Ah and Ah. So, we can obtain the following theorem.

Theorem 3.1. Suppose that the triangulation is quasi-uniform, the condition number of matrix A�1
h Ah satisfy
jðA�1
h AhÞK 1; ð31Þ
where Ah and Ah are the coefficient matrix of equations (8)–(10) with SFVEM and FEM, respectively.

According to Theorem 3.1 it shows that the inverse of FEM coefficient matrix A�1
h is an efficient precondi-

tioner of Ah SFVEM coefficient matrix of linear PDEs (8)–(10). Therefore, preconditioning SFVEM can be
realized by preconditioning FEM.

Here, we present an AMG precondition.
Let Ah be a matrix from FEM, V k; k ¼ 1ð1ÞJ be a group of finite element space such that

V 1 � V 2 � � � � � V J :¼ Sh
0;Nk ¼ dimV k;Ak be the FEM coefficient matrix on k-th level space Vk. The essential

operations of precondition is that, for any given vector g, calculate the vector w = Bg.

Algorithm 3.2 (AMG). Let B1 ¼ A�1
1 , for given Bk�1 : RNk�1 ! RNk�1 and 8gk 2 RNk , we define Bk : RNk ! RNk

as follows:

step1: V 1 ¼ R1
kgk

step2: V 2 ¼ V 1 þ QT
k�1Bk�1Qk�1ðgk � AkV 1Þ

step3: Bkgk ¼ R2
kV 2,

where Rl
k ðl ¼ 1; 2Þ are the pre-smoother and post-smoother of Ak, respectively, Qk�1 is restrict operator of

RNk ! RNk�1 ; QT
k�1 is the interpolate operator of RNk�1 ! RNk .

According to Algorithm 3.2, we can precondition the FEM coefficient matrix Ah, for most triangulation
(e.g. quasi-uniform, shape regular), we have [8,9]
jðBAhÞK 1; ð32Þ

where B :¼ BJ is defined by Algorithm 3.2.

Because of the equivalence of Ah and Ah, we have
jðBAhÞK 1:
It shows that B is an efficient preconditioner of SFVEM coefficient matrix Ah induced from linear PDEs (8)–
(10).
3.4. Mesh adaptation

In recent years, the mesh adaptation technique based on Hessian matrix arises a new view point both in
theoretical analysis and adaptive computation [13,14,16,19]. In [17], the relationship between the optimal mesh
and Hessian matrix was demonstrated. Here, we briefly describe the relevant theory.

Let X be an open set of Rn. Given a function u 2 C2ðXÞ, we define a symmetric positive definite matrix func-
tion H(x) and a scaled Hessian matrix as follows:
jntðr2uÞðxÞnj 6 c0n
tHðxÞn; n 2 Rn; x 2 X; ð33Þ

Hp ¼ ðdet HÞ�
1

2pþnH ; p P 1; ð34Þ
here, c0 is positive constant. The matrix H is called a majorizing Hessian matrix of u and Hp defines a Riema-
nian metric on X. In [17], the relationship between the optimal mesh and Hessian matrix was established.
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When we use the theory to adapt the mesh, it is very difficult to get the Hessian matrix (ðr2uÞðxÞ) from the
numerical solution, especially, using the linear finite element of which the piecewise second order derivative is
zero. Here, we introduce the following method to calculate the Hessian matrix with linear finite element.

First, we calculate the numerical gradient of each node with some recovery technique from numerical solu-
tion. Replacing the numerical solution uh with the element ðouh

ox or ouh
oy Þ of ruh in turn, we can obtain o2uh

ox2 , o2uh
oy2 , o2uh

oxoy
with the same recovery technique. Then, we have the Hessian matrix ðr2uÞðxÞ for
ðr2uÞðxÞ �
o2uh
ox2

o2uh
oxoy

o2uh
oyox

o2uh
oy2

0@ 1A: ð35Þ
In [12,15,18], some recovery methods have been developed to approximate the gradient. Here, we use a simple
average method as follows:
ðruhÞðxiÞ ¼
P

s2Xi
jsjðruhÞsP
s2Xi
jsj : ð36Þ
According to the theory of mesh adaptation based on Hessian, we design the following algorithm for
Eqs. (1)–(3).

Algorithm 3.3. Let T h
0 be the initial triangulation and T h

k ðk ¼ 0; 1; 2 . . .Þ be the kth adaptive grid, then find the
adaptive grid T h

kþ1:

step1: Restrict the numerical solution of grid T h
k to grid T h

0;
step2: Calculate Hp(x) on each node of T h

0;
step3: Calculate �d the average length of edge in T h

0 under the new metric;
step4: Mark the edge to refine, of which the length is longer than k�d under the new metric. Here, k is a param-

eter used to control the scale of adaptive grid;
step5: Create adaptive grid T h

kþ1 by refining the marked edge of T h
0, the numerical solution of T h

kþ1 is interpo-
lated from T h

0.

Let u0
a; u

kþ1
a , a ¼ e; i; r be numerical solutions on grid T h

0 and T h
kþ1; P i 2 o

2T h
kþ1 be a node of grid T h

kþ1. In
Algorithm 3.3, we use the following method to implement the interpolation from T h

0 to T h
kþ1.

(1) P i 2 ðo2T h
kþ1 \ o2T h

0Þ, then
ukþ1
a ðP iÞ ¼ u0

aðP iÞ: ð37Þ

(2) If P i 62 o2T h

0, the father points P i1; P i2 2 o2T h
0 of Pi can be found. According to (4), the density of energy

be follows
e0
r ðP i1Þ ¼

cr

q
ðu0

r ðP i1ÞÞ4; e0
r ðP i2Þ ¼

cr

q
ðu0

r ðP i2ÞÞ4; ekþ1
r ðP iÞ ¼

e0
r ðP i1Þ þ e0

r ðP i2Þ
2

:

Then, we have
ukþ1
e ðP iÞ ¼ u0

e ðP i1Þþu0
e ðP i2Þ

2
;

ukþ1
i ðP iÞ ¼

u0
i
ðP i1Þþu0

i
ðP i2Þ

2
;

ukþ1
r ðP iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qekþ1

r ðP iÞ=cr
4
p

:

8>><>>: ð38Þ
3.5. Two-grid method

In [20–22], some two-grid methods were proposed to solve the nonsymmetric, indefinite and nonlinear
problem, which solve the original problem on a coarser grid and solve a simplified problem on a finer grid.
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Because of the efficiency, two-grid method has engaged scientist’s attention in the recent years. Some people
have used this method to solve nonlinear parabolic equations, nonlinear schrodinger equations, reaction–dif-
fusion equations, elasticity problem, two-dimension incompressibility Navier–Stokes equation, stationary
MHD equation and integral equation [23–26], etc. Here, we will design a two-grid algorithm to solve 2-D
3-T diffusion equations.

Let T H ; T h be two quasi-uniform triangulation, H, h be the mesh size of them, respectively, H� h.
Assuming that ~T h

e ;
~T h

i ;
~T h

r are the approximate solution functions of nonlinear equations (5)–(7) on the
fine grid Th, we derive the following independent linear PDEs from the coupled linear partial differential
equations (8)–(10).
�rðderT eÞ þ ðdei þ der þ ceÞT e ¼ fe; ð39Þ
� rðd irT iÞ þ ðdei þ ciÞT i ¼ fi; ð40Þ
� rðdrrT rÞ þ ðder þ c0rÞT r ¼ fr; ð41Þ
where de; d i; dr; dei; der, and c0r are same as Eqs. (8)–(10),
fe ¼ ceT ðn�1Þ
e þ dei

~T h
i þ der

~T h
r ;

fi ¼ ciT
ðn�1Þ
i þ dei

~T h
e ;

fr ¼ c0rT
ðn�1Þ
r þ der

~T h
e :
~Ka; a ¼ e; i; r; ~wei; ~wer are the conduction coefficients and energy exchange coefficients calculated by ~T h
a. Then,

we can proposed the two-grid algorithm of nonlinear PDEs (5)–(7).

Algorithm 3.4 (Two-grid method).

step1: Find the numerical solution functions T H
e ; T H

i ; T H
r of the nonlinear PDEs (5)–(7) on the coarse grid Th;

step2: Get the approximate solution functions ~T h
e ;

~T h
i ;

~T h
r of fine grid Th with interpolation of solution func-

tions on coarse grid Th;
step3: Find the numerical solutions �T h

e ;
�T h

i ;
�T h

r of electron linear PDE (39), iron linear PDE (40) and photon

linear PDE (41) on the fine grid Th.
step4: Solve the coupled linear PDEs (8)–(10) on the fine grid Th, the coefficients of which are calculated by

�T h
e ;

�T h
i ;

�T h
r .

Though we solve the couple linear PDEs (8)–(10) on the fine grid Th in Algorithm 3.3 to control the energy
conservation error of system, our two-grid algorithm is still related to so-called mesh independence principle

(MIP) for solving nonlinear differential equations (5)–(7).
If we use finite element method to solve the linear and nonlinear equations in Algorithm 3.3, it is very easy

to prove that the convergence error with k � k1 is Oðhþ H 2Þ by the FEM theory. Considering the spectra equiv-
alence of FEM and SFVEM, we apply the SFVEM to solve the PDE in Algorithm 3.4.

3.6. Integrated algorithm

By integrating all new methods mentioned above, we propose the following algorithm to solve 2-D 3-T dif-
fusion equations (1)–(3).

Algorithm 3.5.

step1: Initial temporal variable Dt, t ¼ 0; tend ¼ T and mesh T H ¼ T h;
step2: Update grid Th with algorithm 3.3;
step3: Solve nonlinear PDEs (5)–(7) with two-grid algorithm 3.4;
step4: t ¼ t þ Dt
step5: Adapt the time step size Dt based on the coarse grid TH and numerical solution;
step6: if ðt < tendÞ goto step2
step7: End.
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4. Numerical examples

In this section, we apply our algorithms to 2-D 3-T diffusion equations (1)–(3). We take the typical model of
laser-driven implosion of inertial confinement fusion in paper [5] as a benchmark. Deuterium gas (DT), glass
(SiO2) and plastic foam (CH) are filled into subdomain X1; X2; X3 respectively.

Fig. 4 depicts the three triangulations of the computational domain. Mesh0 consists of 2356 triangle ele-
ments. Mesh1 is a consistent refinement of Mesh0 and Mesh2 is a consistent refinement of Mesh1. The element
numbers of Mesh1 , Mesh2 are 9424, 37,696, respectively.

We use energy conservation error to evaluate the efficiency of different algorithms, which is defined as
follows:
Table
Energy

Physic

FVEM
SFVEM

Table
Averag

FEM

6.85 ·
Err ¼ En
enter � ðEn

own � E0
ownÞ

En
enter

���� ����;

where En

enter denotes the total radiation energy importing from free boundary, En
own the system energy at time

tn, E0
own the initial energy of the system.

4.1. Efficiency of SFVEM

In Section 3, we have indicated that the discritization of SFVEM is cheaper than FVEM and FEM by the-
oretical analysis. Here, we calculate the 2-D 3-T diffusion equations on mesh0 with FEM, FVEM and
SFVEM. Table 1 shows the average discrete speed of three different schemes. It demonstrates that SFVEM
discretization is faster than the classical FVEM and FEM. Table 2 shows the energy conservation error at five
different physical time of FVEM and SFVEM. These results verify the efficiency of SFVEM.

4.2. Efficiency of preconditioning

In order to check efficiency of preconditioning for SFVEM, we calculate 2-D 3-T diffusion equations on
mesh0 with Algorithm 3.1, which discretize the equations with SFVEM. GMRES and CG iteration methods
are used to solve linear system. BILU and AMG are applied to precondition the SFVEM, respectively.
Fig. 4. The triangulations in the numerical example: (a) mesh0, (b) mesh1, (c) mesh2.

2
conservation error (%) of different method

al time 1.0 5.0 10.0 20.0 100.0

9.37 6.71 5.85 5.32 4.40
8.69 6.50 5.68 5.17 4.32

1
e time for one discretization (s)

FVEM SFVEM

10�2 4.42 · 10�2 3.63 · 10�2
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From Table 3, we find that AMG is an effective preconditioner of SFVEM, but BILU has very little effect
on the simulation. We will use CG(AMG) method to solve the linear system in the examples that follow.

4.3. Efficiency of adaptive

Here, we finish the simulation of 2-D 3-T diffusion equations with FC-SFVEM-CG(AMG) method and
adaptive Algorithm 3.3. We name the example ‘‘Adaptive(Hess)’’.

Fig. 5 shows the contours of photon temperatures at time of 3.08, 11.85 in the numerical example. It indi-
cates that the front of radiation evolution of photon energy is located at the subdomain of CH, SiO2 and DT,
respectively, and the approximate photon temperature is originally symmetrical. Similarly, the approximate
electron and iron temperatures are all originally symmetrical. The phenomena certify the original symmetry
of Eqs. (1)–(3), which can be found in all examples.

For comparison, we finish the same simulation with an ordinary adaptive method based on gradient and
call the example Adaptive(grad), and fill the energy conservation error of ‘‘Mesh0’’ and ‘‘Mesh1’’ into
Table 3, which calculate the equations on Mesh0 and Mesh1 with FC-SFVEM-CG(AMG) method.

From Table 4, we can find that the energy conservation of Adaptive(Hess) is much better then Mesh1, of
which the number of elements is no more than 3600. It is obvious that Adaptive(Hess) is more efficient than
Adaptive(Grad).
Table 3
Comparison of precondition (BILU and AMG)

Item BILU_GMRES BILU_CG AMG_GMRES AMG_CG

t = 1.0 8.70 8.70 8.70 8.70
t = 5.0 6.50 6.50 6.50 6.50
t = 10.0 ** 5.69 5.69 5.69
t = 20.0 ** 5.17 5.17 5.16
t = 100.0 ** ** 4.32 4.32
Time iteration ** ** 5832 1961
CPU time (s) ** ** 19,514.03 6,813.77

‘‘**’’ Means that the time iteration is more than 106.

Fig. 5. Contours of photon temperature: (a) t = 3.08, (b) t = 11.85.

Table 4
Energy conservation error (%)

Physical time Mesh0 Mesh1 Adaptive(Hess) Adaptive(Grad)

1.0 8.69 4.16 3.19 4.87
5.0 6.50 3.14 2.52 3.96

10.0 5.68 2.74 1.72 3.38
20.0 5.16 2.48 1.56 3.41

100.0 4.32 2.08 1.59 3.16



Table 5
Comparison of energy conservation error (%) and CPU consuming

Item Mesh0 Mesh1 two-grid(Mesh1) two-grid(Mesh2)

t = 1.0 8.69 4.16 4.18 2.07
t = 5.0 6.50 3.14 3.16 1.56
t = 10.0 5.68 2.74 2.77 1.37
t = 20.0 4.92 2.37 2.42 1.20
t = 100.0 4.32 2.08 2.11 1.05
Time iteration 1961 2925 1961 1961
CPU time 1.89 h 16.49 h 2.74 h 8.44 h

Table 6
Comparison of energy conservation error (%) and consuming of CPU

Item Mesh0 Mesh1 Adaptive(Hess) two-grid (Mesh1) Integrated

t = 1.0 8.69 4.16 3.19 4.18 3.16
t = 5.0 6.50 3.14 2.52 3.16 2.43
t = 10.0 5.68 2.74 1.72 2.77 1.81
t = 20.0 5.16 2.48 1.56 2.42 1.53
t = 100.0 4.32 2.08 1.59 2.11 1.60
Time iteration 1961 2925 3569 1961 1961
CPU time 1.89 h 16.49 h 3.43 h 2.74 h 0.99 h
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4.4. Efficiency of two-grid method

In order to check the efficiency of two-grid method, we accomplish two numerical examples ‘‘two-grid

(Mesh1)’’ and ‘‘two-grid(Mesh2)’’ with Algorithm 3.4. The fine mesh of two-grid(Mesh1) is Mesh1. Mesh2

is used as the fine mesh of two-grid(Mesh2). The coarse grid of two examples are both Mesh0.
From Table 5, we get the following observations.

(1) The energy conservation error of two-grid(Mesh1) has a little difference with Mesh1. It demonstrates
that the two-grid method has no effect on improving the conservation error.

(2) The CPU time of two-grid(Mesh1) is only 17% of Mesh1, which have the same fine grid. Two-grid
method is effective on reducing the computation time.

(3) The energy conservation error of two-grid(Mesh2) is 50% of two-grid(Mesh1). The reducing scale of
energy conservation error is still consistent with the order of the whole numerical method.

4.5. Efficiency of integrated algorithm

Algorithm 3.5 integrate the all new method developed in this paper. We use the algorithm to finish the
numerical example ‘‘Integrated’’. For comparison, we fill the energy conservation error and CPU consuming
of example Mesh0, Mesh1, Adaptive(Hess) two-grid(Mesh1) and Example Integrated into Table 6.

From the result of Table 6, we can find that the energy conservation error of Integrated is similar as Adap-

tive(Hess), and the CPU time is only 29% of the later. It demonstrates that Algorithm 3.5 is the most efficient
method for 2-D 3-T diffusion equations.

5. Conclusions

In this paper, we proposed a symmetric finite volume method, an AMG preconditioner, a mesh adaptive
algorithm and a two-grid algorithm. With the new methods, we improved the common process of solving
2-D 3-T diffusion equations, and obtain a new algorithm that integrated all the methods developed in the
paper. Numerical examples demonstrate that the new algorithms are effective. Considering the relation
between the 2-D 3-T diffusion equations and radiation fluid dynamics equations, we expect that our new meth-
ods will provide efficient numerical approaches in the simulation of ICF.
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